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The decay to equilibrium is discussed from a general point of view based 
on the assumed rapid approach to local equilibrium for well-chosen initial 
states. The assumption is applied to the problem of time correlation func- 
tions and it is shown that the mode-coupling formula describes the asymp- 
totics of the so-called projected wavenumber-dependent correlation 
functions. The local equilibrium assumption thus provides a general basis 
for the t -al2 behavior of correlation functions derived in previous papers 
in this series, as well as for the infinite series of correction terms t -~2-e~) 
(n >/ 2), with Pn = 2-~, and for the corresponding series of corrections 
of order k 3-p" (n/> 1) to Navier-Stokes hydrodynamics. 

KEY WORDS: Nonequilibrium statistical mechanics; local equilibrium 
assumptions; generalized hydrodynamics; Green-Kubo formulas; mode- 
coupling formulas; long-time tails. 

1. INTRODUCTION 

In 1970 A l d e r  and  Wainwr igh t  (1~ publ i shed  s t rong compute r  evidence for  the 

existence o f  a tai l  in the veloci ty corre la t ion  funct ion,  decaying  like an inverse 
power  o f  t ime. This  r emarkab le  d iscovery  t r iggered a mul t i tude  o f  theoret ica l  
s tudies 4 on  the a sympto t i c  behav io r  o f  the  genera l  class o f  t ime  corre la t ion  
funct ions  appea r ing  in the G r e e n - K u b o  formulas  (see, e.g., Ref.  3) for  the 

t r a n s p o r t  coefficients. 
Several  different  lines o f  a rgumen t  have been pursued.  The  mos t  funda-  

menta l  one, tha t  o f  general ized kinet ic  theory,  was in i t ia ted  by  D o r f m a n  and  
Cohen/4> They  der ived a low-dens i ty  express ion for  the tails in G r e e n - K u b o  

1 Instituut voor Theoretische Fysica, Rijksuniversiteit, Utrecht, The Netherlands. 
2 Institutt for Teoretisk Fysikk, Universitetet i Trondheim, Trondheim-NTH, Norway. 
a Laboratorium voor Technische Natuurkunde, Techniscbe Hogeschool, Delft, The 

Netherlands. 
4 See Ref. 2 for a recent review. 
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integrands, and extending the results to higher densities in the spirit of the 
Enskog theory, they were able to reproduce the computer data, amplitudes 
included. Generalizations of these results in several directions using kinetic 
theory have since appeared, s 

A formal kinetic theory for arbitrary densities has recently been presented 
by R6sibois et al. (9) Exploiting certain plausible assumptions, which are 
checked for self-consistency, they use diagrammatic techniques in a derivation 
of the asymptotic validity of the so-called mode-coupling formula for the 
correlation functions. Their argument is sufficiently general to provide a 
basis not only for the leading asymptotic tails, but also for an infinite series 
of closely spaced corrections, discussed by Pomeau (1~ and by Ernst and 
Dorfman.(11) 

Other approaches, (2) which we will not consider here, are based on 
fluctuating hydrodynamics, on hydrodynamics generalized to include product 
modes, or on the nonlinear Boltzmann equation. 

In the present series of papers 6 we discuss the asymptotics of the time 
correlation functions on the basis of  one crucial local equilibrium assumption: 
that of a (relatively) fast approach of a carefully constructed initial non- 
equilibrium ensemble describing a local fluctuation to a state close to local 
equilibrium. By a "local fluctuation" in this context we mean a fluctuation 
taking place in a region which is large compared to a characteristic micro- 
scopic size, taken to be the equilibrium correlation length ~:, but small 
compared to the macroscopic size. The concept " rap id ly"  is not quantita- 
tively defined. It essentially means faster than the slow processes which we 
keep. One may well ask why such a phenomenological point of view can be 
of interest at the present time, considering the recent results obtained by the 
more fundamental approach of generalized kinetfc theory. The reason is the 
following: The derivations from first principles suffer from a high degree of 
complexity. They involve resummations over infinite subclasses of diagrams, 
complicated arguments on the magnitude of the remainder, etc. Furthermore, 
the arguments have not yet attained the impeccable status of mathematical 
rigor. It seems therefore meaningful to parallel the diagrammatic approach 
by a phenomenological one, which, although still complex, has the virtue of 
relative simplicity in addition to focusing directly on the physical mechanism 
involved. 

In paper I (12) we considered the kinetic terms of the time correlation 
functions. For  those terms the local equilibrium assumption was only needed 

5 See, e.g., Refs. 5-8. A more complete set of references is given in Ref. 2. 
6 See Ref. 12 (referred to hereafter as I; see also Ref. 13) and Ref. 14 (referred to as II; 

see also Ref. 15). 
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on the level of the one-particle distribution function. When potential terms 
are included, as in paper II, (14) an assumption on distributions in F-space is 
required. A discussion of local equilibrium ideas on the F-space level was not 
given in II, however. Instead, the calculations were, without detailed motiva- 
tion, based directly on the mode-coupling formula. ~16) 

The function of the present paper is to derive the mode-coupling 
formula for the asymptotic time dependence of correlation functions on the 
basis of the local equilibrium assumption. We shall also try to put the local 
equilibrium ideas into a more general perspective. To that end we recall, in 
Section 3 (after having defined notation in Section 2), the derivation of 
generalized hydrodynamics from the local equilibrium assumption. The 
arguments, which are in the spirit of the Chapman-Enskog development of 
the Boltzmann equation, provide a necessary background for the subsequent 
discussion of the correlation functions, especially in Section 4. 

In addition to the correlation functions which enter in the Green-Kubo 
formulas, we consider a more general class of so-called projected time 
correlation functions Uk(t), where the currents are wavelength dependent, 
and where the time dependence is not described by the full Liouville propaga- 
tor e x p ( - t ~ )  but by a projected operator exp(-tPjo,cr We shall argue, in 
Section 4, that a consistent use of the assumption on the approach to local 
equilibrium, necessary for the derivation of hydrodynamics in Section 3, 
unambiguously shows that the mode-coupling formula describes the asymp- 
totic time behavior of the projected wavelength-dependent time correlation 
Uk(t) and not the asymptotics of the true wavelength-dependent time cor- 
relation Ck(t) obtained from Uk(t) by replacing the projected Liouville 
propagator by the true one. This point has barely been noticed in the liter- 
ature. 

Sections 5 and 6 mainly focus on the delicate problem of how to decom- 
pose the initial equilibrium ensemble into components on which a local 
equilibrium assumption can consistently be made. In order that the subtlety 
of the problem can be appreciated, we have chosen a stepwise approach. In 
Section 5 we define a decomposition which is close in spirit to one previously 
proposed by Pomeau. (17) On the basis of the corresponding local equilibrium 
assumption, the mode-coupling formula is derived. Nevertheless, we show 
by a counter example that this method leads to inconsistencies, even on the 
two-mode level approximation. 

Consequently, a refined version of the decomposition and the associated 
local equilibrium assumption is called for. We present it in Section 6. The 
mode-coupling formula is rederived, and the counterexample against the 
method of Section 5 is shown not to apply to the refined version. 

We close, in Section 7, with an extended discussion. 
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2. N O T A T I O N  

The objects on which our discussion is based are the hydrodynamic 
variables of a simple fluid, i.e., the low Fourier components of number, 
momentum, and energy density. Their microscopic definitions have been 
given in I and II and various usefullinear combinations were discussed in II. 
In the present paper only very general properties of the hydrodynamic 
variables will be used. We consequently refrain from repeating their detailed 
definitions here. 

We shall be content with stating that it is convenient from the start to 
work with those linear combinations of the densities of conserved quantities 
that are eigenfunctions of linearized hydrodynamics. They are the hydro- 
dynamic modes ak~(F), where the superscript labels two shear modes, two 
sound modes, and a heat mode. The subscript k is, as usual, the Fourier 
variable, and I ~ indicates the dependence on the phase space variable (for 
details, see II). We shall restrict ourselves to modes with k values corre- 
sponding to wavenumbers below a (small) cutoff kc, the number M of 
allowed k values being equal to Vkc%r -a (V is the volume of the system). 
The normalization is chosen as in II and reads, to zeroth order in k, 

(ak~a~ *) = V 3~j ~ ,  (1) 

where the bracket denotes an average over an equilibrium grand canonical 
ensemble. With periodic boundary conditions in V, the average product of 
modes with k # 1 automatically vanishes due to translational invariance. 

In order to simplify the notation, we collect these 5M modes in a column 
vector a(F). The corresponding row vector is denoted by a(F) and its complex 
conjugate by a*(l-') = a*(F). As a short-hand notation the components of 
a(F) will, when needed, simply be written as a,,(P). The orthonormality 
relations (1) can now be summarized as 

(aa*) = V1 (2) 

where 1 is the 5M x 5M unit matrix. 
The modes were defined as Fourier components of deviations of densities 

from their equilibrium average. Consequently 

(a) = 0 (3) 

The (classical) mechanical equation of motion for a(F) reads 

da(F)/dt = ~ea(r) (4) 

where s is the Liouville operator. Since a(I') is the density of a conserved 
quantity, - .~a(P)  is the divergence of the current associated with a(F). It 
follows that s vanishes as ]k[ when k -+ O. 
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The local equilibrium distribution p,(I'lB(t)) in 17 space plays a crucial 
role in the subsequent arguments. It has the form (see, e.g., Ref. 18) 

p,(17]B(t)) = peq(r) exp[a*(17). B(t)]/(exp[a*. B(t)]) (5) 

where poq(F) is the total equilibrium distribution, both peq and p~ being 
normalized to unity. The inner product should be interpreted as 

B = ~ '  a~*gk ~ = B*. a (6) a t . 

with the summation over every Cartesian component of k restricted by 
Ikx.,.~l < kc. The second equality in (6) follows from the (cubical) sym- 
metry 7 of the region in k space over which we sum. The absence of a factor 
V-1 in (6) (which will prove a formal convenience later) is due to the con- 
vention chosen for Fourier transforms of fields (or rather, of the deviations 
from their equilibrium values) 

B~, ~ = (1/V) f dr[exp(- ik.r)]B'(r) (7) 

The fields B(t) in (5) (with components Bk and Ikx.~,zr < ke) are parameters 
with (otherwise) arbitrary values and specify the local equilibrium state 
completely. By varying the B(t) one can give the local equilibrium average 
of the hydrodynamic modes (a)z any desired value. When the low Fourier 
components of the averages of the hydrodynamic modes in some non- 
equilibrium ensemble are given, the associated local equilibrium state is 
constructed such that 

(a)~on~q = (a)~ = (~/OB*) ln(exp(a*. B))  (8) 

This equation defines the associated hydrodynamic fields B. 
The Fourier language developed above is the convenient one in the 

context of Sections 3 and 4. The problems taken up in Sections 5 and 6, 
however, are more easily elucidated in terms of a cell picture in real space. 
Since the Fourier description has been restricted to the M = k~%r-3 V lowest 
components, a real space description in terms of a cubic lattice with M = V/vc 
ceils of volume vc is completely equivalent. 

The hydrodynamic fields in cell ~ with center at r= are then, by (7), 

B'(,) = ~ '  [exp(ik.r,)]Bk ~ (9) 
k 

7 I t  would be somewha t  more  natura l  to restrict the s u m m a t i o n  over k to a spherical 
region. The cubical one  is more  convenient  for  our  purpose ,  however,  and the difference 
is o f  no  physical  consequence.  
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In cell language the integrated densities over a cell ~ are the natural objects 
to work with, so we define a 

a~(~) = (vc/V) ~ '  [exp(ik-r=)lak ~ (10) 
k 

With these definitions the dot product (6) can be read in two equivalent ways: 

a*. B = ~ '  a~Bk' = ~ ai(~)B~(~) (11) 
k,i ~,t 

with two corresponding interpretations of the local equilibrium state (5). 

3. L O C A L  E Q U I L I B R I U M  A N D  H Y D R O D Y N A M I C S  

3.1.  In i t ia l  C o n d i t i o n  

The importance of local equilibrium states is that they are, in a coarse- 
grained sense, asymptotically approximate solutions of  the Liouville equation 
for a certain class of initial states. In this section we shall consider the hydro- 
dynamic equations for such initial states. 

The fundamental assumption underlying this paper is that speciata (to be 
specified later) initial states will approach a local equilibrium state rapidly. 
On the basis of this assumption we focus, in the spirit of the Chapman-  
Enskog development of the Boltzmann equation (see, e.g., Ref. 19) on the 
small deviation from the local equilibrium state, and derive hydrodynamic 
equations with transport  kernels slightly generalized beyond the Navier-  
Stokes order. Such a procedure is, of course, not new, and our version is 
particularly close to the one proposed by Piccirelli/~~ It  will be restated here 
in a condensed form as a necessary background for the arguments in subse- 
quent sections. 

Our special initial distribution p~(P; 0) can be written in the form 
[defining ~b(P)] 

p~(F; 0) = pz(l~[B)[1 + ~(F)] (12) 

8 I n  F-space variables, a~(a) is to be interpreted as 

a '(r ;  ~) = ~ a/(r)  
1 

where the sum goes over all particlesj with centers rj within cell ~. When a ~ is the energy 
density, aj*(F) will depend on the position of particles within the interaction range of 
partide j; i.e., a (Y; a) may depend on the positions of particles outside (but close to) 
cell a. 

* Such refinements of the local equilibrium assumption by restricting the initial states is 
only relevant if one is interested in nonlinear hydrodynamics (e.g., Section 4). In the 
case of linear hydrodynamics one may allow an essentially arbitrary initial state. 
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where B, in accordance with (8), is defined by 

f dr ps(P; 0)a(D = f dP p,(F]B)a(F) (13) 

The local equilibrium assumption can now be formulated as follows: The 
distribution p~(P; t) resulting from our special initial states will rapidly 
evolve (in a coarse-grained sense) into a distribution of the normal form 

p~(r; tlB) = p,(rlB(t))[1 + ~ ( F ;  t)] (14) 

where the long-lived deviation ~b 8 from strict local equilibrium is generated 
by the gradients in the hydrodynamic fields B(t) themselves. [The contribution 
to p~(F; t) resulting from the initial ~(F) decays after a short initial period 
has elapsed.] Again in accordance with (8), these fields are, for all times, 
defined by 

f dP p~(P; t)a(P) = f dP pz(P]B(t))a(P) (15) 

and, in particular, their initial values are given by (13). The normalization 
of p~ in (14) together with (15) immediately yields the local equilibrium 
averages 

{~bB(t)), = 0; (~bB(t)a)z = 0 (16) 

Below we shall derive (hydrodynamic) equations for B(t) assuming the 
F-space distribution to be of the normal form (t4). As a consequence, the 
equations will only be valid after the initial state p~ has decayed to p~. The 
precise duration of the initial transient will depend on the detailed properties 
of p, but is, by assumption, short. The question is then whether B(t) by back- 
ward hydrodynamic extrapolation to t = 0, i.e., through the initial transient, 
coincides with the true value of B(0) as given by (13). In general, the answer 
is no and the nontrivial problem of constructing corrected initial conditions 
for hydrodynamics, using the information contained in }(F) of (12), is known 
as the "connection problem across the initial boundary layer. ''<21~,*~ 

However, the difference between the true B(0) and the appropriate 
initial data is only significant in the context of hydrodynamic equations of 
O(k a) or higher. In the following we shall only generalize Navier-Stokes 
[i.e., O(k2)] hydrodynamics by less than one order in the wavenumber. Within 
this approximation it is, indeed, consistent to neglect the information con- 
tained in ~(F) and use B from (13) as initial data. 

Effectively, then, the local equilibrium assumption enables us, within 
the approximation needed, to base the subsequent discussion on (14) for all 
t t> 0, supplemented with the initial condition ~bB(P; 0) = 0. 

=o For a simple example see Ref. 22. 
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3.2,  T h e  G r a d i e n t  T e r m  

The first step in the derivation of hydrodynamics from (14)-(15) consists 
in expressing ~bB(I'; t) as a functional of local equilibrium states, i.e., as a 
functional of B(t). To this end, rewrite the Liouville equation for p~ as follows: 

[(a/0t) + ~e]pt(t)~bB(t ) = --[(O/Ot) + Sr ) (17) 

The local equilibrium state depends on time through B(t) only, and using (5) 
and (8), we have 

0p,(t) = 0 t  p,(t) [a'  OBot 0,0 ln(exp(a'. B))] 

f aB 
= p~(t)[a*(P) - ( a ) d ' " f f /  (18) 

In general, aB/Ot is related to O<a>,/Ot by the matrix relation 

0__BB= 8B O<a)~ (19) 

The Liouville equation gives for the latter quantity 

O(a),/Ot = - f  dP a(r)~o.(r;  t IB) 

= - f  d r  [a(r)  - ( a ) , lLeo . ( r ;  t lB) (20) 

The last term in (20) could be added since it vanishes due to the time invari- 
ance of the normalization of p,. 

Equations (18)-(20) can be written in the compact form 

8p,(t)/Ot = -P'(t)~pn(t ) (21) 

where the projector <9'a) P'(t) is defined by 

e'(t)p,h(r) = Ma*( r )  - (a'),]. aB/o (a ) ,  

�9 f dP'[a(P') - (a),lp,(r')h(P') (22) 

Due to the weight factor p~ the integral in (22) converges [i.e., the definition 
of P'(t) is meaningful] for a large class of functions h(I'). The fact that 
[P'(t)] 2 = P'(t) is a consequence of the local equilibrium version of (2). 
Differentiation of  (8) gives 

( [ a ( r )  - (a);l[at(I ') - (a*)z]) = O(a)dOB (23) 
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Since, by (7), B is of O(V-1), the right-hand side of (23) is of O(V), as it 
should be. Use of (21) and (14) transforms (17) into 

[(9/Ot) + P• = - P _ ( ( t ) ~ p z ( t )  (24) 

where P• = 1 - P ' .  
Equation (24) is still an exact consequence of (17). In particular, no 

linearization has yet been performed. At this point, however, we shall take 
formal advantage of the basic assumption already introduced, and, in the 
spirit of the Chapman-Enskog method, linearize around states of local 
equilibrium. Note first that 

~ p t  = pz ~o-c~'a*" B (25) 

is of O(kcB), i.e., linear in B and kc, since ~a*  is linear in k for small k, and 
the summation implied by the dot product in (25) is restricted to k < kc. 
Similarly, 

~pdOt = p~a*.~B/Ot (26) 

is of O(kcB), as follows from (18)-(20). Finally, since ~bB(F; 0) = 0, CB(F; t) 
will be of the order of the inhomogeneous term in (24), i.e., again of O(k~B). 
To linear order in the gradients, (24) consequently reduces to 11 

[ (e /e t )  + P~(t)~]4,~(t) = - p . ( t ) z e  In p,(t) + O(ko2B ~) (27) 

with the projector P. ( t )  = 1 - P ( t )  defined by 

o,(t)P(t) = P'(t)p~(t) (28) 

The formal solution of (27) with initial condition CB(F; 0) = 0 reads 

f2 r  t )  = - dr' C~(t, t ' ) e •  In oz(t') (29) 

where the Green's function (or rather, the integral operator on F space) 
G(t, t ')  solves the equation 

[(~/0t) + P.(t)~q~]G(t, t ') = 0 (30) 

subject to the initial condition G(t, t) = 1. Equation (29) accomplishes our 
first goal: it provides an expression for ~B in terms of pz or, equivalently, in 
terms of B. Its validity is restricted by the fact that terms of O(kc2B 2) have 
been neglected. For our purposes, however, (29) will prove sufficiently 
accurate. 

11 From (27) the nonlinear Navier-Stokes equations can be derived consistently, but not 
the nonlinear Burnett equations. The linear Burnett equations are still completely 
contained in (27). However, the initial condition, CB(I'; 0), should be modified to this 
order of approximation in view of the connection problem across the initial boundary 
layer. 



32 M.H.  Ernst, E. H. Hauge, and J. M, J, van Leeuwen 

3.3. Nonl inear  Hydrodynamics  

As a second step one must derive hydrodynamic equations for B(t) by 
appealing to the conservation laws together with (19) and (29). Equation (20) 
can be rewritten as 

O(a),/~t = - f  dP  a(F).LPp~ = f d r  p~.L~'a = ( .~a)z + (~bB~a)~ (31) 

The first term [of O(kcB)] has the form 

= - f  dP  aZapz = - (a~q~a*)~. B(t) =- - Vf~B(t). B(t) (32) 

The subscript stresses the dependence of ~B on the local equilibrium param- 
eters B. 

The second term in (31) is of O(kc2B) [and use of (29) implies neglect in 
(31) of terms of O(kcaB2)]. As a preliminary to writing it down, note that 

(~bB(t)P(t).~a), = 0 (33) 

which follows from the definitions (28) and (22), and the relations (16). 
Insertion of (29) and use of (25) then yields 

f; (~bB(t)~a)z = -- dr' ([Px(t).~a]G(t, t')P.(t').~ea*)z. B(t ')  (34) 

Define the correlation matrix U~(t, t') as 

U~(t, t') = V - l ( [ P , ( t ) L e a ] G ( t ,  t ')Pl(t')Sea*)~ (35) 

Equation (31) can then be written in the form 

f2 1 0 ( a ) ,  = _ n~( t ) .  B( t )  - ,it' UB(t, t ' ) .  S ( t ' )  (36) 
V 8t 

Supplemented with (19), Eq. (36) constitutes a closed set of equations of 
motion for the hydrodynamic fields B(t). If the second term on the right is 
neglected, (36) reduces to the usual nonlinear Euler equations. Dissipation 
is included with the second term and from its form it is clear that non- 
Markovian effects have not been altogether ignored. In fact, (36) mildly 
generalizes the nonlinear Navier-Stokes equations [O(k~2)] in that it is 
consistent up to, but not including, O(kca). 

3.4. Linearized Hydrodynamics  

Finally, we perform a second linearization. This time we shall linearize 
in small deviations (measured by B) from total equilibrium; i.e., we shall 
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replace the matrices a(a)z/OB, f ~ ( t ) ,  and UB(t, t ' )  by their total equilibrium 
forms. The first one becomes trivial due to (23) and (2), 

8(a) f fOB ~ V 1  (37) 

In equilibrium, the Euler matrix becomes strictly diagonal in k. With the 
current jk ~ defined as 

-- ikjk ~ = .q~ ak ~ (38) 

we extract the factor ik  and define the equilibrium 5 x 5 Euter matrix as 

ikf2k = ( 1 / V ) ( a k ~ a k * )  = i k (1 /V) (ak jk* )  (39) 

To find the dissipative matrix in equilibrium we first note that the 
Green's function (30) reduces to 

G(t, t ') = exp[-  (t - t ' )P• (40) 

where the equilibrium form of P j_ = 1 - P follows from (22), (28), (37), and 
translational invariance as 

i P - Pgk = (l/V) ~ ak (I')(akgk) (41) 
t 

Projected quantities will be distinguished by a caret, 

j~ = e , j k  = - (ik)- 1e~eak; ~ = t ' ~  (42) 

Second, the dissipative matrix also becomes strictly diagonal in k in total 
equilibrium, and extracting the factor lik] z, we define the 5 • 5 matrix 

Uk(t)  = V -  l(]k[exp(- t.~q~)]jk*) (43) 

The linearized version of (36) then reads 

// aBk/at = -- ikf~k. Bk( t )  -- k 2 dr'  Uk(t - t ').  Bk(t ' )  (44) 

where the dot products have the same meaning as previously, except that no 
summation over k is implied. 

In terms of Laplace transforms 

l 

B,  = | dt e -Z tB( t )  (45) 
d 0 

(44) can be cast into its final form 

zBk~ + ikf~k. Bk~ + k2Uk~ �9 Bk~ = Bk(0) (46) 

We close this section with a summary and some comments: 
(i) For certain special initial states, which are assumed to evolve rapidly 
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into states close to local equilibrium, we have derived hydrodynamic equa- 
tions by a two-step linearization. In the first place we found an expression, 
(29), for the small difference between the normal solution and strict local 
equilibrium, by linearizing in small gradients. The result, (36), was a com- 
plicated set of nonlinear, non-Markovian equations for the hydrodynamic 
fields. (Some remarks on the linear and nonlinear hydrodynamic equations 
for arbitrary initial states will be made in Section 7.) A second linearization 
around total equilibrium resulted in the simpler equation (46). 

(ii) The dissipative kernels Uk(t) are projected correlation functions and 
reduce, in the limits V--> oo, k - .  0, and after integration over t, to the 
appropriate combinations of the standard Green-Kubo expressions<3) for the  
linear Navier-Stokes transport coefficients. Their k-dependent versions, as 
derived here, have been shown by Pomeau <1~ and Ernst and Dorfman <11) to 
contain terms of orders k 112, k 8/4, k 7~8, etc.; i.e., although the consistency of 
(46) breaks down at O(kS), those equations still contain an infinite series of 
correction terms beyond the Navier-Stokes level of O(k2). 

(iii) At the beginning of this section we argued that in the context of 
hydrodynamic equations of lower order than O(k 8) the " t rue"  initial values 
B(0), as determined by (13), can consistently be used; i.e., they are sufficient 
with regard to (46). For hydrodynamics of O(kS), however, the true initial 
values should be corrected by terms of O(k). 

4. T I M E  C O R R E L A T I O N  F U N C T I O N S  A N D  
T H E  G R A D I E N T  T E R M  

In the previous section we derived, on the basis of a local equilibrium 
assumption, hydrodynamic equations with dissipative kernels expressed as 
projected current-current time correlation functions. We now turn to the 
problem of how this type of assumption can be exploited in the evaluation of 
such correlation functions. 

The quantity of central interest is the dissipative matrix U~,(t) of (43), 
which contains the projected propagator exp(-tA~). Since, however, local 
equilibrium ideas are associated with evolution according to the full Liouville 
propagator exp(- tSr their immediate implications relate to the true (5 • 5) 
time correlation matrix 

Ck(t) = r/-1/.~ ~-t.~t t,, - ,,jk~ j k / =  V-X<]k(t)]k *) (47) 

In this section we show that the long-time asymptotics of Uk(t) can be found 
by a calculation of Ck~(t), the local equilibrium contribution to Ck(t). 

The actual calculation of CkZ(t) is taken up in subsequent sections. For 
our present purposes all that is needed is the method in broad outline. The 
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first step is to split the equilibrium ensemble in (47) into special initial 
ensembles ps(I'; O) such that Ck(t) can be written as 12 

Ck(t) = f ds h(s)(jk(t))~ (48) 

where (...)s is an average with r 0), and h(s) is the product of the initial 
current and the appropriate weight factor. By assumption the F-space 
distribution of these special ensembles rapidly approaches the normal form 
p, of (13) and subsequently evolves according to the hydrodynamic equations 
of Section 3. With the known form of p, one can calculate the current at time 
t. Finally, the special ensembles are recombined according to Eq. (48) and 
Ck(t) is obtained. 

Two differences with Section 3 should be noted. First, our present 
objective is the derivation of expressions for Ck(t), or, by virtue of (48), for 
the current (]k(t))~. Consequently, rather than eliminate currents in favor 
of hydrodynamic quantities, as in Section 3, we shall choose the opposite 
strategy. Second, it will prove useful to keep (formally) the rapidly decaying 
initial contributions to the current. 

Evaluation of Ck(t) is essentially the calculation of the current in (48), 
which can be expressed as 

t (]k())~ = Jk(t) = Jk~(t) + Jk'(t) + Jk~ (49) 

Here we have written p~(t) = p,(t) + p,(t), where p, is the normal form (14) 
and p~(t) is a (by assumption) rapidly decaying initial term. The average offk 
calculated with p~(P; t) is indicated by Jk*(t). The average o f fk  with the 
normal form gives according to (14) a local equilibrium current, Jk~(t) = 
(fk)~, and a contribution from the gradient term, reading 

// & g ( 0  = ( ~ B ( t ) / k ) ,  = --i~: d r  Uk(t - r ) . ( a k ( r ) ) ~  + R(t) (50) 

This expression, where only the linear term is written explicitly and the 
remainder is denoted by R(t), can be deduced from (34) by the procedure of 
Section 3.4. The linearization is based on the following considerations. There 
are two smallness parameters in the problem: The wavenumber k and the 
deviations from equilibrium as measured by (ak)s, or equivalently by Bk. 
The first term on the right-hand side of (49) is of O(1) as far as both k and B 
are concerned. As will be shown in Section 5, Jk' is to leading order of O(B 2) 
(i.e., nonlinear in the hydrodynamic fields); higher order corrections such as 

12 The details of the prescription for the splitting do not affect the arguments of this 
section, which apply equally well whether the procedure of Section 5 or that of 
Section 6 is chosen. 
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O(kB 2) or O(B 8) will be neglected. From (50) it is also clear that Jk g is of 
O(kB); the correction term R(t) is again of O(kB 2) and consistency thus 
requires that it be neglected. 

As mentioned already, we intend to eliminate (ak(t))~ from (50) and 
observe that (ak(t))8 is related to (jk(t))s = Jk(t) through the hydrodynamic 
equations, i.e., 

O(ak)s/Ot = f d r  ps.LZ~ak = f dI' p,(PSgak + Px~ak) (51) 

Due to (39) and (41) the first term reads 

/ d r  p,P.~ak = - i k  f aI' p,f2k.a k = --ik~2k.<ak(t)) ~ (52) 

and with (42) and (49) we have for the second term (Pa~ak)s = -ikJk(t) .  
Taking Laplace transforms of (51) and solving for (ak~),, we obtain 

<ak~)~ = (z + ikf~k)-t'((ak)~ -- ikJk~) (53) 

where (ak)s is the initial value at t = 0. [Equation (53) is actually a nonlinear 
hydrodynamic equation, since Jk(t) contains Jk~(t), which is quadratic in the 
hydrodynamic fields B(t).] By inserting (ak~), in the Laplace transform of 
(50), multiplying it by h(s), and integrating over s, we have expressed the 
contribution of the gradient term in Uk~ and Ckz themselves 

Cgz = --k2Uk~.(z + ikOk)-l.Ck~ (54) 

C~  is defined in the obvious manner 

C~. = / ds h(s)J~., a = g, l, i (55) 

and the relation f ds h(s)(ak)~ = (]k*ak) = 0, which is a consequence of 
(41)-(42), was used in the derivation of (54). Since Ck~ = C~  + C~  + C~, 
it follows directly from (54) that 

Ck~ = (z + ikf~k). (z + ikf~k + k2Uk~) -1. (C~ + C~) (56) 

The remarkable fact is that the relation (56) is of precisely the same 
form as the identity connecting the matrix of true time correlation functions, 
Ck. in (47), with the dissipative matrix, Uk. in (43), reading (24~ 

Ck. = (z + ikOk).(z + ikf~k + k2Uk.) -~. Uk~ (57) 

This identity may be derived directly from the matrix relations 

Uk. = Ck~ + ikU,.~.N~,~, zNk~ = - i k C k .  - ikf2k.Nk~ (58) 

with N ~  -1 � 9  = V (a,,zj~,), as can be obtained from (39)-(43). 
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By comparing (55) and (57) we deduce that 

Uk(t) = Ck'(t) + CuZ(t) (59) 

Since the initial contribution Ck~(t) is rapidly decaying, we have shown that 
the long-time asymptotic behavior of the projected correlation function Uk(t) 
is precisely given by the local equilibrium contribution to the full correlation 
function, i.e., 

Uk(t) -- Ck~(t) (60) 

We emphasize again that the main results (59) and (60) are independent of 
the details of the splitting in special ensembles, and apply as long as the time 
evolution of these special ensembles is governed by hydrodynamics. 

In summary, we have proved the following statement: Suppose that the 
long-time behavior of Ck(t) is calculated on the basis of a local equilibrium 
assumption (14), i.e., Ck(t)~-Ckl(t)+ Ckg(t), where Ck z and Ck g are, 
respectively, the contributions from the local equilibrium term and that from 
the gradient term ~bB in (14). Then, (i) Ck~ can be expressed in terms of 
Uk(t) and of Ck(t) itself. (ii) From the identity (57) relating Uk(t) and Ck(t) 
it follows that the long-time asymptotic behavior of the projected correlation 
matrix Uk(t) is given by the local equilibrium contribution CkZ(t) to the true 
correlation matrix. 

5. D E C O M P O S I T I O N  IN BARE H Y D R O D Y N A M I C  
E N S E M B L E S  

5.1. M o t i v a t i o n  

We now turn to the delicate problem of how to construct a decomposi- 
tion (48) of the initial equilibrium ensemble appearing in Ck(t) in such a way 
that each component can be consistently assumed to develop rapidly into a 
state close to local equilibrium. Strictly speaking, the decomposition we 
consider in the present section will prove a failure in this respect. We shall 
nevertheless discuss it in detail, for the following reasons: 

(i) It has a certain intuitive appeal and is close in spirit to the procedure 
used in I. 

(ii) It amounts to a somewhat simplified version of a derivation already 
given by Pomeau (17~ of the mode-coupling formula, and consequently (given 
the results of Section 4) implies all the results on long-time tails, etc., found 
in Refs. 10-14. 

(iii) The fact that it nevertheless, when applied to other correlation 
functions than those encountered in Sections 3 and 4, leads to serious 
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inconsistencies, is a striking demonstration of the subtlety of the local equi- 
librium assumption. Thus, the successes and failures of the decomposition to 
be used in the present section motivate the discussion in Section 6 and lead to 
the refined decomposition and final form of the local equilibrium assumption 
found there. 

For simplicity we consider a typical (diagonal) term of the matrix Cl,(t) 
in (47). The arguments used are independent of this restriction, and the results 
generalize immediately to the complete matrix. The object to be considered, 
then, is 

Ck(t)  = V -  ~<]ke-t~']k*) (61) 

where j~ = Y~j] exp(-ik.r~) is one of the components of the column vector 
(42), and where j] is the part of the total current associated with the ith 
particle. The notation is slightly deceptive: With potential terms included, j] 
will depend not only on the velocity of particle i, but also on the relative 
positions of all other particles within the range of the interaction. 

5.2. Cell  Descr ip t ion  of  Ck(t) 

As pointed out in Section 2, a slowly varying function with periodic 
boundary conditions in V can be equivalently represented by its Fourier 
components up to a finite cutoff Ik~,y,d ~< kc or by the set of values it takes 
on a cubic lattice with lattice constant l = ~rk~ -1 in real space. Each lattice 
point can be considered the center of a cubic cell with volume vc = U, the 
total number of cells being M = V[vc = Vkc3/~r 8. Our discussion is confined 
to hydrodynamic, i.e., small, wavenumbers and we shall measure l on the 
scale of the equilibrium correlation length t. The cell size will be chosen as 
small as possible, but sufficiently large that the open subsystem associated 
with each cell can be considered thermodynamic to a good approximation. 
This choice implies that equilibrium cell-cell correlations should, for con- 
sistency, be neglected. One can think of l as being typically of the order 
of 10t. 

With a notation analogous to that of (10), we can then write 

~ ] (  ) p( " ) (62) J x  = r e x  --tk-ra 
g 

where j(=) = ] (P;  a) is the total current of cell ~. It depends, apart from the 
phases of the particles inside cell % also on the positions of particles in 
neighboring cells close to the (mathematical) surface of cell ~. The relative 
importance of this surface effect, as compared to the bulk contribution to 
](~), decreases with increasing cell size. For 1 ~ 10t it should already be 
negligible. 



Asymptotic Time Behavior of Correlation Functions. III 39 

In the same spirit Ck(t) can be expressed in terms of the cell-cell correla- 
tion function CaB(t) as 

Ck(t) = (vd 11) ~ {exp[ik. (r~ - rB)]}C=B(t ) (63) 

with 

C=B(t) = (1]vc)(](fl)e-t~'](oO) (64) 

Consistent neglect of equilibrium cell-cell correlations implies that C,B(0) = 
const • 3=B. We shall mostly use cell language in what follows, since it is 
conceptually clearer. We stress, however, that the formal manipulations are 
equivalent in Fourier language. 

5.3. Bare Hydrodynamic  Ensembles 

We shall now construct a specific decomposition of the type (48) of the 
initial equilibrium ensemble and formulate the corresponding local equilib- 
rium assumption. The conceptual advantage of a cell description in this 
context is the possibility of realizing the decomposition (48) by imposing 
local constraints. 

Since we are discussing current-current correlation functions, we first 
have to remove the factor ](1"; a), because it would lead to a nonpositive 
probability density. (For an alternative treatment see Section 7.4.) This can 
be done by constraining the total current in cell a to have the value J at time 
t = 0. The corresponding decomposition amounts to slicing 1" space into 
she/Is ,of constant ](1"; a). The normalized distribution on a shell at t = 0 
reads 

p,(1"; 0) = P~a(1") 8(](F; a) - J)/fea(J) (65) 

with the equilibrium current distribution given as 

f~q(J) = (3(j(1") - J ) )  (66) 

Hence, the cell-cell correlation function can be written 

c = e ( t )  = (1lye) f dJAa(J)J(J(fl," �9 t)),  (67) 

where (](/3; t)) j  is the average of the current in cell/3 at time t taken over the 
initially constrained ensemble (65). 

However, the decomposition (67) is not sufficiently detailed for the 
application of a local equilibrium assumption. The reason is that all averages 
of conserved densities and thus all hydrodynamic fields vanish in the con- 
strained ensemble (65). Therefore, a further decomposition of ps(1"; 0) with 
respect to its hydrodynamic content is needed, and in addition to ](~), the 
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conserved quantities a'(a) (r = 1,..., d + 2) in cell a are given specified 
values (namely A') at t = 0. ~25) The corresponding generalizations of (65)- 
(67) read 

p,A(P; 0) = peq(P) 8(j(~) -- J ) ~  S(ar(a) - Ar)/feq(J, A) (68) 
T 

f~a(J, A) = ( 3 ( . ] ( a ) -  J ) ~  3 (a ' ( a ) -  A ' ) ~  (69) 
N ~e / 

C~a(t) = (l/v,) f . . . f  dS dA f~q(J, A)J(](fl; t)),a (70) 

We shall call the distribution psa(F; 0) a "ba re"  hydrodynamic ensemble 
since the corresponding variance of a conserved quantity in cell ~ vanishes 
at t = 0. "Dressed" hydrodynamic ensembles with a nonvanishing variance 
in the initial distribution of at(a) will be consideted in Section 6. 

With the initial decomposition defined by (68)-(70) we are ready to 
formulate the associated local equilibrium assumption. We assume that 
p~A(r; t) rapidly takes the normal form 

psa(r; t) ~ p,(P; t lB )  = p,(rlB(t))[1 + ~B(r; t)] (71) 

Before investigating the consequences of (71), we shall summarize the 
reasons why the decomposition (68)-(70) and the associated local equilibrium 
assumption (71) appear to form a sound foundation upon which a phenomeno- 
logical theory can be built. The plausibility of (71) is based on the fact that the 
constraints imposed on 0Ja are: 

(a) Local: They are restricted to a single cell, since with l ~ 10~, equilib- 
rium fluctuations in different cells are, essentially, uncorrelated. 

(b) Few: In d dimensions the number of constraints is d + 3. la Roughly 
speaking, the fewer the constraints, the closer will the initial distribu- 
tion be to a local equilibrium form, and the shorter the time required 
to approach the local equilibrium state. 

(c) MiM: The distribution foq(J, A) effectively limits the values of J and 
A to the fluctuation range. Consequently, the initial inhomogeneities 
will be small in magnitude. 

In addition, the constraints in (68) will, in the next subsection, be shown to 
be sufficient in the sense that (68)-(71) allow a derivation of the mode- 
coupling formula. Independent evidence (4,9) exists for the correctness of the 
long-time, small- k asymptotics of the mode-coupling formula. Such evidence 
clearly strengthens the case for (68)-(71). Nevertheless, as we shall see, 

la This is the point where the decomposition of this section differs from that used by 
Pomeau. C~7) 
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(68)-('/1) also lead to serious inconsistencies. As a result, we shall be forced 
to reconsider the precise nature of the constraints in Section 6. 

5.4. M o d e - C o u p l i n g  Formula  

The immediate task, however, is to investigate the consequences o f  
Eqs. (68)-(71) and, in particular, to derive the mode-coupling formula 
from those equations. According to (60) it is the contribution to Ck(t) from 
pz(rlB(t)) that determines the long-time asymptotics of Uk(t). Consequently, 
we replace Pin by p~ to find for the current <j(/3; t)>sA 

(.](/3)>, = (j(fl) exp[a*. B(t)]>/(exp[at. B(t)]> 
= (](fl) exp[a(fl). B(fl; t)]>/<exp[a(fl). B(fl; t)]> (72) 

Here we have interpreted the dot product according to (11) in cell language 
and consistently neglected equilibrium correlations between different cells. 
Since the initial values of  the decaying fields B(fl; t) are kept within the 
fluctuation range, an expansion of  (72) in powers of B makes sense. Using 
the relations <./(/3)> = 0 and (a(/3)j(fl)> = 0, which by translational invari- 
ance are immediate consequences of  (41)-(42), we calculate the leading 
term to be 

(j(fl))~ = �89 ~, (j(fl)ar(~)a~(/3))ff(fl; t)B~(fl; t) + . . .  (73) 
T)8 

In paper I (Appendix A) we have explicitly shown that higher terms in (73) 
can be neglected for large times. 

By virtue of  (8) and (2), with consistent neglect of cell-cell correlations, 
the values of the hydrodynamic fields in cell/3 are, to lowest order in B, given 
by vcBr(/3, t ) =  (ar(/3; t)).ra, with initial values <a~(/3; 0)>~a = 8,~ W. We 
now take formal advantage of the fact that the a's are chosen so as to 
diagonalize the hydrodynamic matrix, i.e., in cell language 

B'(fl; t) = G'(/3; t l~)Br(~; 0) (74a) 

Or, in Fourier language, 

Bk~(t) = Gk~(t)Bk'(O) (74b) 

The hydrodynamic propagators 1~ in (74a) and (74b) are related in the 
standard way [cf. (10)], 

Gr(/3; t lc~) = (vc/V) ~ '  {exp[ik(r~ - r~)]}Gk~(t) (75) 
k 

14 An explicit expression for the propagators is not needed for the general arguments. 
However, if one assumes that a dispersion relation for the "frequency" zk" of the 
hydrodynamic mode ak ~ exists up to, but not necessarily including, O(k3), one can 
write C~'(t) = exp(z~t). 



42 M, H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen 

After insertion of (74) into (73), it remains to average over initial condi- 
tions, i.e., to recombine the constrained ensembles into a total equilibrium 
one in the manner of (70). With (69) and the initial condition B'(fl; O) = 
v~-1 8~ B A r, the initial average yields the two-mode amplitude 

dr"---- v;I f . . . f  dJ d.4L~(J,A)JA'A~ 
= Vc t(](c~)ar(<z)a~(c~)) = V -  l(.]oaoraoS) (76) 

The subscript 0 indicates the Fourier component with k = 0. The last 
equality in (76) is a consequence of the fact that d r* becomes independent of 
Vc when l >> ~, i.e., the thermodynamic limit of d '~ exists. (For explicit 
expressions, see paper II.) 

The local equilibrium contribution C~B(t), which, as shown in Section 4, 
becomes asymptotically equal to U~B(t ) for long times, follows from (70)- 
(76) as 

C~a(t) ~_ U~a(t) ~_ (2vc) -~ ~ (drs)zGr(fl; t l~)G~(/3; t fr ) (77) 
r , 8  

This is the mode-coupling formula, written in cell language. By (63) and (75) 
it can immediately be rewritten in the more familiar form 

Ck~t) ~-- Uk(t) ~-- (2V) -1 ~ '  Z '  (drs)ZG~(t)G~-q(t) (78) 
q r,8 

The correlation functions are, strictly speaking, defined in the limit V-+ ~ .  

In (78) this limiting process is reduced to V-  1 ~q' _+ (27r)- a f dq. In addition, 

the amplitudes d TM are used in their limiting form. 
The result (77)-(78) applies to one typical diagonal element of the 

matrix C or U. However, the various matrix elements only differ as far as the 
amplitudes (76) are concerned, and the generalization to the whole matrix is 
therefore immediate. 

5.5.  C o u n t e r e x a m p l e  

Encouraging as the results of the previous subsection may be, we shall 
now show by a counterexample that the local equilibrium assumption in the 
context of bare hydrodynamic ensembles may lead to serious inconsistencies. 

Consider.the quantity Eo(t) --- vc (j(/3, t)), which vanishes by definition. 
[The current ](/3, t) is not the only possible choice for the present argument; 
see, e.g., Section 6.1.] By virtue of (63)-(64), we are free to interpret it as the 
Fourier transform (with k = 0) of the correlation function 

~ a ( t )  = vZ l ( j ( f l ) e - t~A(a) )  (79) 
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where 

A(a) = (~  in cell a 
otherwise 

According to the procedure of Section 5.3, we decompose the initial equilib- 
rium ensemble 

z~B(t) = v; - ~  dAA~(A)<j(~; t)~A (80) 

where ( " ' ) a  is an average over the bare hydrodynamic ensemble 

pa(F; 0) = p.a(F) ~ 8(ar(~) - A~)/f~,(A) (81) 
)- 

with 

f~q(A)= (~r  3(ar(~)- Ar) ) (82) 

In order to extract the long-time asymptotics of E~(t),  we appeal to the 
local equilibrium assumption on pA(F; t), in precise analogy with (71), and 
follow the steps of Section 5.4 to obtain 

-~o(t) _~ (2v) -1 ~ '  ~.~'-Gg(t)G'_q(t) (83) 
q r 

where we have used the relation 

vg 1 f dA f~q(A)ArA ~ = v~" a(aT(cOa~(~)) = ~r~ (84) 

If.]o represents any current except the longitudinal momentum current .(for 
explicit expressions, see II), the amplitude d "  and thereby the long-lived 
(~  t -  3I~) terms of Eo(t) vanish identically. When]o contains the longitudinal 
momentum current, however, ~r does not vanish for all r. On the basis of 
(83) one would then conclude that Eo(t) has a t -3/2 tail. 

Although blatantly false, this conclusion was based on precisely the 
same procedure, and, in particular, on precisely the same assumption 15 of a 
rapid decay toward local equilibrium of bare hydrodynamic ensembles that 
was successfully exploited in the derivation of the mode-coupling formula. 

It is hard to avoid the conclusion that bare hydrodynamic ensembles 
cannot decay rapidly to local equilibrium after all. That such ensembles 
contain slowly decaying initial terms is confirmed by the identity 

0 --- ~0(t) -= ~oZ(t) + VoW(t) (85) 

15 The fact that the constraint on j(a) has been removed in pA should make it an even 
better candidate for a local equilibrium assumption according to the criteria in 
Section 5.3. 
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(compare the case for k v ~ 0 in Section 4). Clearly the "initial" term E0~(t) 
decays just as slowly as E01(t) itself I 

Strictly speaking, the existence of a counterexample on the level of 
two-mode processes against the method of bare hydrodynamic decomposition 
invalidates the derivation of the mode-coupling formula given above. In the 
next section, however, we shall construct a refined decomposition which 
permits local equilibrium assumptions to be made without leading to incon- 
sistencies. The derivation of the mode-coupling formula is correspondingly 
modified, and it will become clear why, for current-current correlation 
functions, the results are unaffected by the refinements. 

6. D E C O M P O S I T I O N  IN D R E S S E D  H Y D R O D Y N A M I C  
E N S E M B L E S  

6.1. The Need for  Ref inements  

From the discussion of the previous section one can draw the following 
conclusions: (i) The local equilibrium assumption in the context of bare 
hydrodynamic ensembles must be in error. (ii) This error may or may not 
manifest itself, depending on the correlation function studied, i.e., depending 
on which moments of the distribution function are actually calculated. 

In fact, in all strictly linear theories of nonequilibrium phenomena, errors 
involving higher moments of conserved quantities will not have any conse- 
quences. The asymptotic behavior of the current-current correlation func- 
tions, however, is, as we have seen, determined by two-mode processes; i.e., 
the var iance  in the distribution of conserved quantities plays a crucial role. 

As a result, the naive expectation that almost any constrained ensemble 
rapidly develops into a normal state is in need of revision. We shall argue 
below that the failure of the decomposition used in the previous section is due 
to a mismatch of the initial variance and that of a local equilibrium state. The 
argument leads to a definite proposal for a refined decomposition. As an 
implication, we shall state our local equilibrium assumption in its ultimate 
version. Finally, the computational consequences of these refinements will 
be considered. 

The counterexample of the previous section can be sharpened so that it 
points directly to the error introduced by the local equilibrium assumption 
in the context of bare hydrodynamic ensembles. Replace the current j in 
(79) by the quantity 

[aa] - aa  - v ~ ' l ( a a a ) . a  - -  ( a a )  (86) 

where a = a(/3). Clearly, ([aa]) and, in addition, ( [ a a ] a )  vanish identically. 
The corresponding "correlation function" E,a( t )=  v y l ( [ a a ] e - t e e A ( c , ) )  
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measures the (vanishing) deviation of the variance of a from its equilibrium 
value (aa). 

However, by the arguments of the previous section, one again finds a 
t-3/2 tail in the local equilibrium part of E,B(t ), given by (83) with d r* = 
vg-l([aa]da*). From the identity (85) one then concludes that the approach 
of the locally vanishing variance to its local equilibrium value, contrary to 
assumption, cannot be fast. Physically, the buildup of a variance in the 
initially sharp local distribution of conserved quantities involves transport of 
such quantities and is therefore itself a hydrodynamic process. 

We are thus led to the conclusion that only constrained ensembles in 
which the variances (and more generally, all higher moments) of conserved 
quantities already have their local equilibrium values should be expected to 
approach a local equilibrium state rapidly. The problem is then how (if 
possible) to decompose an arbitrary nonequilibrium ensemble into ensembles 
with this special .property. 

6.2.  T h e  D i s t r i b u t i o n  f(A) 

In order to make the above considerations precise, we shall consider the 
distribution function of conserved quantitiesf(A) associated with an arbitrary 
initial nonequilibrium ensemble p(l~; 0). By definition, 

f (A)  = f d r  p(r; 0) 3(a(r) - A) (87) 

The corresponding distribution associated with a local equilibrium state is 
given as 

f(A[B) = (8(a(P) - A))z = (8(a - A)exp(a*. B))/(exp(a*.B)) (88) 

Although they will not be of direct relevance to the arguments below, 
we make some remarks o n f  of (88). 

(i) In (88), a(I ~) can be interpreted as the column vector of M Fourier 
variables {ak~(r)} or of M cell variables {aS(F; a)}. 

(ii) The cell size was chosen such that cell-cell correlations can be 
neglected; i.e., in cell languagef factorizes 

f (A(a),  A(/~),...]B(~), B(fl),...) = 1-I f(A(a)lB(a)) (89) 
r 

Given the factorization (89), f~ does not, however, factorize with respect to 
Fourier variables. 

(iii) From the definition (88) and with (89) one readily shows t h a t f  for 
a cell has the form 

f(A(~)IB(~; t)) = foa(A(~) - (a(a))~Ibo + B(c~; t)) (90) 
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i . e . , f  has the form of an equilibrium distributionf~q(Albo) = (3(a(a) - A)), 
where b0 stands for the temperature and chemical potential in equilibrium. 

(iv) As can be seen from (90), both the mean and the variances will shift 
slowly (by one-, two-mode, etc., processes) toward their values in total 
equilibrium. 

6.3.  T h e  D e c o m p o s i t i o n  

We return to the problem of decomposition of an arbitrary initial 
ensemble p(F; 0), and write it as a linear superposition 

p(F; O) = f dB g(B)pB(P; 0) (91) 

where the weight function g(B), which integrates to unity, does not have to 
be semi-positive definite. The so-called "B components" pB must fulfill the 
requirements 

f aa A A( IB) = f ar O) 

=faAA"fdrS(a(p)- A)oB(r; 0) (92) 

i.e., all hydrodynamic moments of pB must have the same values as in the 
local equilibrium state defined by the fields B. This property motivates the 
term "dressed hydrodynamic ensemble" for the B component PB, as opposed 
to the bare hydrodynamic ensembles 16 used in Section 5. 

Equation (92) does not define PB uniquely. One possible form of OB can 
be constructed as follows. Write pB(F ;0 )=  p(P;O)f(a(F)lB)C(a(F)). 
Consistency with (92) then requires that C(a) be chosen such that C(A) x 
S dF p(I'; 0) 3(a(F) - A) = 1. By (87), the resulting PB has the form 

pB(F; 0) = p(F; O)f(a(F)[B)/f(a(F)) (93) 

Operation with S dF 3(a(F) - A) on both sides of (91) gives, for any PB 

satisfying (92), 

f(A) = f dB g(B)f(A [B) (94) 

This integral equation defines g(B). [We assume that g(B) exists for the initial 
ensembles used in this paper.] As a simple example, the B component of a 
local equilibrium state with f(A) = f(AIB') is clearly the local equilibrium 

lo There is close, but not perfect, analogy between the terms bare and dressed used here 
for the distributions in a single cell, and the standard ones of micro and grand used 
in the context of equilibrium ensembles in the total volume. 
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state itself. From (94) one finds g ( B )  = 8(B - B ' )  in that case. The solution 
of (94) is not known in general, however. Fortunately, the full solution is not 
needed. For the purpose of calculating the long-time asymptotics of the 
correlation functions, knowledge of the first few moments of g ( B )  suffices. 

6.4, The Local Equil ibrium Assumption 

Associated with the decomposition (91), the final form of our local 
equilibrium assumption reads: 

Any B component, or dressed hydrodynamic ensemble, pB(P; 0), satis- 
fying (92) will rapidly approach a normal solution p,(P; r iB)  of the form (14). 

By construction, the distribution of conserved quantities in pB already 
equals that of the associated local equilibrium state at t = 0. If one postulates 
that all slow decay is due to hydrodynamic processes involving combinations 
of modes, the above assumption takes on its strongest form. The key word 
"rapidly" should then be read as meaning "exponentially fast." 

We shall not insist on this extreme interpretation of the assumption, 
however. In the context of the asymptotics of the time correlation functions, 
one does not need moments off(A) higher than the second. An interpretation 
of the crucial word "rapidly," sufficiently stringent for our purposes, is thus: 
faster than the slowest two-mode processes. In this context, the requirements 
(92) on all moments of pB beyond the second-order ones should be viewed 
as a formal convenience rather than a real necessity. 

It is instructive to review the intuitive criteria listed in Section 5 for the 
soundness of a local equilibrium assumption on the background of the 
refinements of the present section. The criteria are clearly not sufficient and, 
in particular, the second one must be revised. The states on which the present 
local equilibrium assumption is formulated are restricted by many more  
constraints than those of Section 5. The additional constraints are, however, 
of a special nature: they force the initial distribution o(I'; 0) to be closer to the 
local equilibrium form. 

6.5. Appl icat ion to Ck(t) 

The final task is the application of the decomposition (91), and the 
correspondingly refined version of the local equilibrium assumption, to the 
calculation of C ~ ( t )  in the form (67)17 

coB(t )=v  -~ ~ - '~~  f c ( j ( f l ) e  j ( ) )  = v= ~ dJf~q(J)J(j([3,~ " t ) ) s  (95) 

lr Again we use cell language for simplicity. The argument can, of course, be given an 
equivalent formulation in Fourier language. 
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The average (]>~ involves the constrained ensemble pj(P;0) of (65). The 
problem is then to decompose pI(P; 0) into B-components ps~(P; 0), or, 
specifically, to calculate the necessary moments of g~(B), which solves the 
equation 

--- f dB gx(B)f(AlB) ~(A) (96) 

This equation is a special case of (94), withf~(A) = <3(a - A)>s. Assuming 
that g~(B) has been determined in sufficient detail, we appeal to the local 
equilibrium assumption of Section 6.4 and, with (91), write 

ps(P; t) = f dB g~(B)pIB(F; t) ~-- f dB gj(B)p,(P; t IB) (97) 

The decay of the B-components toward the normal solution is assumed to be 
sufficiently uniform in B that the integration in (97) causes no difficulties. 

The contribution to C~ from the local equilibrium part of p, is easily 
calculated, by the same steps as in Section 5.4, to have the asymptotic form 

~*,S 

x Gr(fl; t[~)G'(fl; tI•)BrB" (98) 

This formula shows that only the second moments of gXB) (actually only 
weighted averages of these moments) are needed in the calculation of the 
long-time behavior of C,~(t). In the appendix it is shown that the moments 
are given uniquely by 

v~ f dJLqY f dB gs(B)BB -1o = vc Q[aa]> 

-- v21<j{aa - v2 l(aaa>, a - (aa>}> (99) 

where all the quantities in the average refer to cell a. By virtue of the orthog- 
onality relations <]> = <]a> = 0, it follows directly that 

vc f dJ fea(J)J f dB g,(B)B~'B " = v~"<jara ~> = d "s  (100) 

With d defined as in (76). Insertion of (100) into (98) yields the mode- 
coupling formula in the form (77), or equivalently (78). 

The crucial difference in the calculations of Sections 5 and 6 leading to 
the mode-coupling formula lies in the recombination of the initially decom- 
posed ensembles as expressed by Eqs. (76) and (99), respectively. Due to the 
orthogonality o f ]  to 1 and to a, the result is the same in both cases. 
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However, the counterexample of Sections 5.5 and 6.1 against the decom- 
position in bare hydrodynamic ensembles is harmless in the context of 
dressed ensembles. The difference from the current-current correlation func- 
tions amounts to the replacement in (76) and (99) of.] by unity. In (76), the 
result is still nonzero in certain cases, resulting in serious inconsistencies. 
The corresponding expression obtained from (99), however, vanishes 
identically. 

In conclusion, with the decomposition in dressed hydrodynamic 
ensembles, the mode-coupling formula has been given a phenomenological 
derivation by a method free from internal inconsistencies. 

7. D I S C U S S I O N  

In this paper we have studied the long-time and small-wavenumber 
behavior of true correlation functions C and projected correlation functions 
U on the basis of essentially one assumption, that of a rapid decay to a 
"normal" state close to local equilibrium of a carefully constructed class of 
initial states. The central result is the asymptotic validity of the self-consistent 
mode-coupling formula (78) for the dissipative matrix U. The asymptotic 
behavior of C follows through the identity (57) connecting U and C. 

To bring out the subtlety of the local equilibrium assumption, we have 
chosen a presentation of stepwise refinement. The failure of the seemingly 
sensible approach of Section 5 is analyzed and provides motivation for our 
final version of the crucial assumption, as presented in Section 6. 

The remainder of this paper is organized as follows. The relations 
between various local equilibrium derivations of the mode-coupling formula 
are reviewed in Sections 7.1-7.3. A more general class of correlation functions 
is touched upon in Section 7.4. Sections 7.5 and 7.6 concern the form of the 
hydrodynamic equations beyond the linear and the Navier-Stokes regimes, 
respectively. Finally, the status of the mode-coupling formula in two dimen- 
sions and in the critical region is corfsidered under points in Sections 7.7 
and 7.8. 

7.1. Earl ier  Der iva t ions  

We first summarize our views, based on the results of this paper, on the 
various types of local equilibrium derivations of the mode-coupling formula. 
A common feature of all such derivations is a decomposition of the form (48) 

C(t) = "ds h(s)(j( t))s (101) 
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The asymptotically relevant parts of the projected current in (10t) can be 
written as two-mode terms 

f ,-, ~ (ja'a')a'a j (102) 
t ,J 

and the constrained average of the current can then be expressed as a sum 
of terms of the type 

(j(t))s "~ ~ (]a'a')(d(t)a'(t))~ (103) 
i d  

If  the constrained averages with nonvanishing coefficients can be decoupled 
into a product of averages (a~(t))~(aJ(t))~,  then, since time evolution accord- 
ing to linear hydrodynamics does not affect this factorization, one has 

( ] ( t ) ) ~  ~ G~(t)G~(t)(ai)~(a~)~ = G'(t)GJ(t)(a~aJ)~ (104) 

Insertion of this expression into (101) leads to the standard mode-coupling 
result for the asymptotic behavior. Clearly, such a factorization holds only 
provided that 

(a~aJ)s = (a i )s (aJ)s  (105) 

This requirement is fulfilled in the following cases. (i) The calculation of 
the kinetic terms of the correlation functions as performed in I. In that case 
the two-mode terms always involve such combinations of vector and scalar 
fields that factorization is an immediate consequence of symmetry. (ii) The 
bare hydrodynamic specification of Section 5 in this paper. There factoriza- 
tion holds by construction. (iii) The same can be said for the initial decom- 
position used by Pomeau, (17~ namely complete specification in the r space 
associated with one cell. (iv) The extreme example along this line is complete 
initial specification in the F space of the whole system, i.e., ps(F; 0 ) =  
8(r - P~). Again, (105) holds by construction. In all these cases, a local 
equilibrium assumption, right or wrong, leads to the mode-coupling results. 

On the other hand, the requirement (105) is not  fulfilled if one generalizes 
the method of I to include potential terms by specifying, in addition to the 
position and velocity of particle 1, also the relative position rl~ of particle 2. 
With this specification, the factorization holds in every case except for the 
bulk viscosity, where two scalar fields are involved (for details, see II). On 
the basis of the (too) simple picture underlying the above arguments, one 
would attribute the failure of this decomposition to an insufficient resolution 
of the initial ensemble with respect to its hydrodynamic content; i.e., different 
values of, say, the initial number densities would not be properly separated, 
but would in some inconsistent sense be treated on the average. 



Asymptotic Time Behavior of Correlation Functions. III 51 

7.2, The  Exclusive Sta tus  of  B C o m p o n e n t s  

The line of reasoning sketched above is, however, not sufficiently dis- 
criminating. The factorization property (101) cannot serve as a criterion of 
validity for local equilibrium derivations of the mode-coupling formula. This 
is already obvious from the extreme example mentioned. An initial ensemble 
3(F - P~) will always retain its form and will never develop into a state of 
local equilibrium. (It follows that, in general, approach to local equilibrium 
cannot be pointwise, but can only hold in a coarse-grained sense.) 

More illuminating than the failure of this extreme example is the 
counterexample against the decomposition in bare hydrodynamic ensembles 
discussed in Sections 5 and 6. The relevance of that counterexample to the 
derivation of the mode-coupling formula is stressed by the fact that the failure 
of the corresponding local equilibrium assumption manifests itself already on 
the crucial level of two-mode processes. As a result, one is forced to revise 
drastically the naive expectation that almost any constrained initial ensemble 
rapidly decays to local equilibrium. In fact, we argue in Section 6 that rapid 
decay to local equilibrium is an exclusive property of a special class of initial 
states. 

This exclusiveness can be given further support by the following argu- 
ment. Any constrained initial state can be written as a sum of two states 

p~(F; 0) = ctp2(r; O) + ezpz(V; 0) (106) 

with cl + c2 = 1 and cl, c2 > 0. By the linearity of the Liouville equation, 
the evolutions of the two states are mutually independent. With the state p,(t) 
are associated the fields Bs(t) according to (15). Correspondingly, Bl(t) and 
B2(t) are associated with pl(t) and p2(t). A local equilibrium assumption on 
p8 would yield 

p~(r; 0) ---> p.(F; t[B~) (107) 

On the other hand, the same assumption on pz and p2 would yield 

t,~(r; 0)--> c~p,(r; tlB 0 + c2p,(r; tlB2) (108) 

Equations (107) and (108) are only compatible ~8 in the degenerate case when 
B~ = B1 = B2. In conclusion, the local equilibrium assumption can only be 
made on a special class of initial states. 

The form of this special class is postulated on the basis of the experience 
gained by the study of the eounterexample against the decomposition used 
in Section 5. The final formulation of our local equilibrium assumption, as 
given in Section 6, applies to dressed hydrodynamic initial states, for which 

18 Note again that the problem of incompatibility between (107) and (108) does not 
show up if one sticks to linear order in B. 
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all moments of conserved quantities already have their local equilibrium 
values. 

We have, of course, no proof of the unique status of the B components, or 
dressed hydrodynamic ensembles, as being the only states with a truly rapid 
decay toward local equilibrium. Such a proof would have to come from a 
more fundamental theory. We would like to point out, however, that in its 
weakest form (which is all that is needed for the derivation of the mode- 
coupling theory) our postulate is sufficiently precise to be tested by computer 
experiments. The issue is then to verify that dressed hydrodynamic ensembles 
decay faster than the slowest two-mode processes, whereas bare ensembles 
do have components as slow as those processes. 

7.3.  R e f i n e d  V e r s i o n  of  F a c t o r i z a t i o n  

With the refined local equilibrium assumption associated with B com- 
ponents, insistence on the simple factorization property (105) must be relaxed. 
From the results of the appendix, however, one has, in the case of decom- 
position in dressed hydrodynamic ensembles, for all times (t = 0 included), 

(aa)~B = (aa) + (aaa). B + vc2BB + �89 : BB 

+ three-mode terms + ... (109) 

The last term is O(vg'l) with respect to vc2BB and can be neglected. When a 
properly weighted average over J and B has been performed, the first term on 
the right of (109) vanishes since ( j )  = 0. The second term similarly vanishes 
since ( ja )  = O. Effectively, then, one has 

(aa)sB ~ v~2BB (110) 

This more refined factorization property replaces (105) in the case of dressed 
ensembles. The essential fact is that the deviations, in (109), from true factori- 
zation are either higher order (in vg 1 or B), or they are constants or one-mode 
terms. 

The reason for the failure of the straightforward generalization of paper I 
to include potential terms, sketched in Section 7.1, must be revised in the light 
of (109)-(110). The point is not that the initial ensemble in that case is 
insufficiently resolved with respect to its hydrodynamic content, but that it is 
incorrectly resolved. It is true that the initial specification of vl, rl, and r12 
does not uniquely fix, say, the total number of particles. Consequently, it 
amounts to treating initial states with different numbers of particles together. 
But the same can be said about the initial decomposition into B components. 
Only in the latter case, however, does the initial distribution of conserved 
quantities coincide with the local equilibrium distribution. Thus, by our 
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fundamental assumption of Section 6, only in the latter case is the approach 
to the associated normal state rapid. 

In short, specification of vl, rl, and r12 does not imply relations of the 
type (109)-(110) in general. For reasons of symmetry, however, this defect 
only manifests itself when one considers the correlation function pertaining 
to the bulk viscosity. A similar error is made with all the decompositions 
mentioned in Section 7.1. But since the factorization (105) holds, the error 
goes unnoticed as far as derivations of mode-coupling results are concerned. 

On this background one should not regard the method of paper I as a 
general one, by which, after straightforward extensions, the asymptotics of 
any desired correlation function can be calculated. Rather, that method 
should be viewed as a simple procedure, valid in the specific cases where it is 
actually used, but with no claim on generality. The general framework for the 
application of local equilibrium assumptions is provided by the present paper. 

7.4. Dressed Current  Distr ibut ion 

In evaluating the current correlation function in Section 6, we first 
decomposed the equilibrium ensemble into initial ensembles pj(P; 0) with a 
sharp value of the current (with, in other words, a bare current distribution). 
A decomposition of ps(F; 0) into B components, as carried out in Section 6.3, 
is conceptually only possible if the current.](F) cannot be expressed com- 
pletely in terms of powers of a(I')'s. This issue is avoided if one uses an initial 
ensemble with a dressed current distribution, which has basically an equilib- 
rium variance in the currents, namely 

px(F; 0) = pea(F) expUt(F ). X]/(exp[ff-X]) (111) 

and calculates the correlation function from Cx(t) = V- l (] ( t ) )x .  Here ](F) 
and X stand either for the cell variables/(F; a) and X(~) or for the Fourier 
variables ./k(F) and Xk. The correlation function of interest C(t) i~ then 
obtained as the coefficient of the first power of X in the X expansion of Cx(t). 
The calculation in the appendix requires minor adaptations for that case. 

7.5. General Nonequi l ibr ium Ensemble 

The postulate that local equilibrium assumptions can only be consistently 
made on B components also has consequences for the derivation of nonlinear 
hydrodynamics. By this postulate, the validity of the derivation in Section 3 
of hydrodynamic equations is restricted to initial B components pB(F; 0). An 
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arbitrary initial ensemble p(F; 0) would thus have to be decomposed as in 
Section 6.2, 

p(r; 0) = f dB g(B)pB(r; 0) (112) 

with g(B) determined from (94). The results of Section 3, valid for each 
pB(F; 0), would finally have to be recombined according to (112). What the 
precise form of the corresponding nonlinear hydrodynamic equations would 
be, and to what extent they would depend on the initial ensemble, still has 
to be investigated. The above procedure has no consequences at the level of 
linear hydrodynamic equations, where one can still make the local equilibrium 
assumption for an essentially arbitrary initial state. 

7.6. Correct ions to Nav ie r -S tokes  and C (t) 

On the basis of the local equilibrium assumption, we have in Section 4 
unambiguously associated the self-consistent mode-coupling formula with the 
projected correlation functions U rather than with the true correlation func- 
tions C. As was noted already in the introduction, the difference between the 
two disappears in the limit k ~ 0. The calculations in I and II apply in 
precisely that limit. However, for small but finite k, the mode-coupling 
formulas can be viewed as a set of coupled integral equations, which can be 
solved iteratively in successive approximations. In three dimensions they 
yield an infinite series of corrections to Navier-Stokes hydrodynamics [of 
O(ka-2-"), with n 1> 1, i.e., all of them below the Burnett order, O(k3)], and 
to the t-~/z tails in the Green-Kubo integrands [of O(t -(2-2-,~) with n 1> 2]. 
Calculations along these lines have been carried out by Pomeau (~~ and Ernst 
and Dorfman. (1~ 

Basic to such calculations is a definite choice (and the two possibilities 
are mutually exclusive): either the mode-coupling formula is assumed to be 
valid for Ck~ or it is valid for Ukz. The calculations mentioned are based on 
the second choice, which we have now shown to be the correct one. In Refs. 
10 and 11 the actually contributing integrals are all such that z > k, and 
thus the distinction between U and C, although conceptually basic to the 
method used, is not important in that range of the variables z and k [see (57)]. 
The situation is different for self-diffusion, however. The corresponding 
mode-coupling calculations in three dimensions have been carried out by 
de Schepper and Ernst, (26~ and in that case, integrals with z = O(k 2) do 
contribute. For such values of z there is not only a conceptual, but also a 
numerical difference between U and C. 

Finally, we note that aside from the phenomenological derivation given 
in this paper, independent evidence exists for the validity of the mode- 
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coupling formula. We refer, in particular, to arguments based on kinetic 
theory. For low densities, the k 5/~ correction to hydrodynamics, the t-v4 
correction to the tail in the velocity autocorrelation function, and the t 1;4 
correction to the time-dependent super-Burnett coefficient have been calcu- 
lated explicitly, ~6"~v and they are all in perfect agreement with the low-density 
limit of the mode-coupling results. For higher densities the arguments of 
R6sibois et  al. ~9~ can serve as an alternative basis for mode-coupling calcula- 
tions. 

7.7. T w o  Dimensions 

It is hard to see why the derivation of the mode-coupling formula (78), 
without explicit expressions of the Green's functions, should only be sound 
for dimensionality d i> 3. If, on the other hand, the Green's functions are 
assumed to be of the Navier-Stokes form (to lowest order), (78) leads to 
nonintegrable Green-Kubo integrands, i.e., to serious inconsistencies in two 
dimensions. It is tempting to blame this failure, not on the mode-coupling 
formula itself, but on the explicit representation used for the Green's functions. 

However, the self-consistent asymptotic behavior ~~ that can be derived 
from (78) is only of very limited interest when one wants to compare with 
existing computer experiments for d = 2. The time needed to approach that 

asymptotic behavior is presumably very long indeed. It is much more realistic 
for times up to 80-100 mean free times to base the calculations on a set of 
~ bare"' transport coefficients (usually chosen to have their Enskog values) 
as a first approximation, and to proceed from there by iteration. In fact, the 
lowest order result shows remarkable agreement with experiments ~2a~ in this 
time regime, both for the velocity autocorrelation function ~4~ and for the 
time-dependent super-Burnett coefficient ! ~2~ 

This astonishing agreement can be "understood" on the basis of the 
plausible postulate that higher iterates have not yet, on the relevant time scale, 
obtained their asymptotic form (which would have amounted to important 
corrections !). Plausible as this postulate may be, it has not yet been backed 
up by convincing calculations, and consequently, the status of the mode- 
coupling formula in two dimensions remains somewhat obscure. 

7.8. Cri t ical  Phenomena 

The mode-coupling formula with k-dependent amplitudes has been 
widely used as a basis for calculations of the dynamical properties of fluids 
close to critical points. Our present derivation of the formula is restricted by 
the assumption that k << ~- 1. Thus it is valid in the so-called hydrodynamical 
region, even close to the critical point. It remains to be seen, however, 
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whether the critical region, where k >> ~:-1, can be understood on the basis 
of a suitably modified version of the fundamental assumption in this paper. 

A P P E N D I X  

For the evaluation of the moments in (98), i.e., 

�9 .. B - f dB  g s ( B ) B . . .  B (A. 1) B 

one does not need to solve Eq. (96). It is sufficient to expandf~(AlB ) in powers 
of B (measuring the small deviations from total equilibrium), and thus deter- 
mine the moments (A.1). For the sake of definiteness we use cell language 
with the current in cell a specified. Since the distribution function for the 
different cells factorizes at t = 0, we only need to consider cell a. The expan- 
sion o f f ( A ( ~ ) l B ( a ) )  in (88)-(89) in powers of B(a)  takes the form 

f(A[B) = f~q(A)[1 + A . B  + {�89 - (aa)} : B B + . . . ]  (A.2) 

Inserting (A.2) into (96), multiplying both sides of the equation by, respec- 
tively, A,  AA, . . . ,  and integrating over A, we find an infinite set of coupled 
linear equations relating the moments (a)~, ( a a ) j  .... with B, B B  .... : 

(a)~ = ( a a ) .  B + �89 : B---B + ... 
(A.3) 

( a a ) j  = ( a a )  + ( a a a ) .  B + �89 - ( a a ) ( a a ) }  : B-B + ... 

where we used f d A ~ ( A ) A  ... A = ( a  ... a ) j  and a similar expression for 
( a  .,. a) .  

In order to solve Eqs. (A.3) we have to determine the volume dependence 
of the fluctuation formulas 

( aa  ... a )  = d : : ' (  dr1 drz ... dr~ F(12 ... n) (A.4) 

where 
F(12 ... n) = (~a(rl) 8a(r2) ... 8a(r~)) (A.5) 

with F(1) = (Sa(rl)) = 0. This will be done by introducing cluster functions. 
The functions F(12 ... n) have the product property for separated configura- 
tions, i.e., if the smallest distance between two groups of particles (12 ... 1) 
and (l + 1 ..... n) is much larger than the correlation length ~, then F(12 ... l, 
l + 1,..., n) factorizes into F(12 ... l )F( l  + 1,..., n). Due to this product 
property we can introduce in the standard way cluster functions C(12 .../), 
which vanish for separated configurations. Hence we have 

J ":" f drl ... drt C(12  ... l) =- (aa  ... a)c = O(vc) (A.6) 
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The cluster expansion is given by the relations 

F(12) = C(12) 

F(123) = C(123) 

F(1234) = C(12)C(34) + C(13)C(24) + C(14)C(23) + C(1234) (A.7) 

F02345) = ~ C(12)C(345) + C(12345) 

where :~ indicates a sum over partitions. Notice that cluster functions for 
isolated particles do not occur in (A.7) since C ( 1 ) =  F ( 1 ) =  0. For the 
integrated quantities in (A.4) one has an identical set of relations in which 
F(12 ... n) is replaced by (a~a2 ... a,~) and C(12 ... n) by (ala2 ... a,~)c, the last 
quantity being of O(vc). 

Using (A.7) and (aa)  = vcl, we can write (A.3) as 

(a)1 = v~.B + �89 : B--B + ... (A.8a) 

(aa - (aa))1  = (aaa) . .B  + vc2ffB + �89 : B-B + ... (A.8b) 

It is clear now that the last term in (A.8b) is of relative,order vg 1 and can be 
neglected. However, to give a consistent solution of (A.8) we have to know 
the relative volume dependence of all terms on the right- and left-hand sides 
of these equations. Only then can we decide whether we should keep, say, 
(aa)  = O(v~), compared to v ~ ' ~ .  The volume dependence of (a ) j  and (aa)~ 
is not clear a priori. We need, however, only 

B ... B -- f aJf~a(J)JB ... B (A.9) 

From the relations (A.8) and (A.9) and f dJ f~q(d)J(a  ... a ) j  = ( j a  ... a)  we 
deduce at once 

( ]a )  = ve.~ + �89 : ~ +. . -  (A. 10a) 

(.][aa - (aa)])  = ( a a a ) . B  + v J ~  + �89 : ~ + ... (A.10b) 

The averages ( j a )  vanish identically for the currents entering in the correla- 
tion functions. If  we want to cover in our discussion also currents with com- 
ponents parallel to a, then ( j a )  = O(v~) typically. Under the assumption 
that the higher order terms in (A.10) can be neglected, Eq. (A.10b) implies 
that B~ is at most of O ( v ~ ) ,  since (.](aa - (aa ) ) )  is O(v~). Consequently, 
we have from (A.10a) that ~ = O(1). In our case, with ( j a )  = O; B vanishes. 

Now, it is clear that the last term in (A.10a) and (A.10b) is of relative 
order v~- x and can be neglected, so that 

B B  = Vc ( j ( a a  - vg ' l (aaa) .a  - ( aa ) ) )  (A.11) 

Combination of (A.9) and (A. 11) yields Eq. (99) in the text. 
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